Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

0/2000

Your Position: Home - Stainless Steel - What is Electrical Steel and Why Do We Use Them?

What is Electrical Steel and Why Do We Use Them?

Author: Franke

Jun. 30, 2025

Electrical steel - Wikipedia

Iron alloy optimized for magnetic properties

Electrical steel (E-steel, lamination steel, silicon electrical steel, silicon steel, relay steel, transformer steel) is speciality steel used in the cores of electromagnetic devices such as motors, generators, and transformers because it reduces power loss. It is an iron alloy with silicon as the main additive element (instead of carbon).

Link to Steelhighsen

Metallurgy

[edit]

Electrical steel is an iron alloy which may have from zero to 6.5% silicon (Si:5Fe). Commercial alloys usually have silicon content up to 3.2% (higher concentrations result in brittleness during cold rolling). Manganese and aluminum can be added up to 0.5%.[1]

Silicon increases the electrical resistivity of iron by a factor of about 5; this change decreases the induced eddy currents and narrows the hysteresis loop of the material, thus lowering the core loss by about three times compared to conventional steel.[1][2] However, the grain structure hardens and embrittles the metal; this change adversely affects the workability of the material, especially when rolling. When alloying, contamination must be kept low, as carbides, sulfides, oxides and nitrides, even in particles as small as one micrometer in diameter, increase hysteresis losses while also decreasing magnetic permeability. The presence of carbon has a more detrimental effect than sulfur or oxygen. Carbon also causes magnetic aging when it slowly leaves the solid solution and precipitates as carbides, thus resulting in an increase in power loss over time. For these reasons, the carbon level is kept to 0.005% or lower. The carbon level can be reduced by annealing the alloy in a decarburizing atmosphere, such as hydrogen.[1][3]

Iron-silicon relay steel

[edit] Steel type Nominal composition[4] Alternate description 1 1.1% Si-Fe Silicon Core Iron "A"[5] 1F 1.1% Si-Fe free machining Silicon Core Iron "A-FM"[6] 2 2.3% Si-Fe Silicon Core Iron "B"[7] 2F 2.3% Si-Fe free machining Silicon Core Iron "B-FM"[7] 3 4.0% Si-Fe Silicon Core Iron "C"[8]

Physical properties examples

[edit]
  • Melting point: ~1,500 °C (example for ~3.1% silicon content)[9]
  • Density: 7,650 kg/m3 (example for 3% silicon content)
  • Resistivity (3% silicon content): 4.72×10−7 Ω·m (for comparison, pure iron resistivity: 9.61×10−8 Ω·m)

Grain orientation

[edit]

Electrical steel made without special processing to control crystal orientation, non-oriented steel, usually has a silicon level of 2 to 3.5% and has similar magnetic properties in all directions, i.e., it is isotropic. Cold-rolled non-grain-oriented steel is often abbreviated to CRNGO.

Grain-oriented electrical steel usually has a silicon level of 3% (Si:11Fe). It is processed in such a way that the optimal properties are developed in the rolling direction, due to a tight control (proposed by Norman P. Goss) of the crystal orientation relative to the sheet. The magnetic flux density is increased by 30% in the coil rolling direction, although its magnetic saturation is decreased by 5%. It is used for the cores of power and distribution transformers, cold-rolled grain-oriented steel is often abbreviated to CRGO.

CRGO is usually supplied by the producing mills in coil form and has to be cut into "laminations", which are then used to form a transformer core, which is an integral part of any transformer. Grain-oriented steel is used in large power and distribution transformers and in certain audio output transformers.[10]

CRNGO is less expensive than CRGO. It is used when cost is more important than efficiency and for applications where the direction of magnetic flux is not constant, as in electric motors and generators with moving parts. It can be used when there is insufficient space to orient components to take advantage of the directional properties of grain-oriented electrical steel.

Amorphous steel

[edit]

This material is a amorphous metal, or metallic glass, prepared by pouring molten alloy onto a rotating cooled wheel, which cools the metal at a rate of about one megakelvin per second, so fast that crystals do not form. Amorphous steel is limited to foils of about 50 μm thickness. The mechanical properties of amorphous steel make stamping laminations for electric motors difficult. Since amorphous ribbon can be cast to any specific width under roughly 13 inches and can be sheared with relative ease, it is a suitable material for wound electrical transformer cores. In , the price of amorphous steel outside the US was approximately $.95/pound compared to HiB grain-oriented steel which costs approximately $.86/pound. Transformers with amorphous steel cores can have core losses of one-third that of conventional electrical steels.

Lamination

[edit]

Electrical steel is usually manufactured in cold-rolled strips less than 2 mm thick. These strips are cut to shape to make laminations which are stacked together to form the laminated cores of transformers, and the stator and rotor of electric motors. Laminations may be cut to their finished shape by a punch and die or, in smaller quantities, may be cut by a laser, or by wire electrical discharge machining.

Electrical steel is usually coated to increase electrical resistance between laminations, reducing eddy currents, to provide resistance to corrosion or rust, and to act as a lubricant during die cutting. There are various coatings, organic and inorganic, and the coating used depends on the application of the steel.[11] The type of coating selected depends on the heat treatment of the laminations, whether the finished lamination will be immersed in oil, and the working temperature of the finished apparatus. Very early practice was to insulate each lamination with a layer of paper or a varnish coating, but this reduced the stacking factor of the core and limited the maximum temperature of the core.[12]

ASTM A976-03 classifies different types of coating for electrical steel.[13]

Classification Description[14] For Rotors/Stators Anti-stick treatment C0 Natural oxide formed during mill processing No No C2 Glass like film No No C3 Organic enamel or varnish coating No No C3A As C3 but thinner Yes No C4 Coating generated by chemical and thermal processing No No C4A As C4 but thinner and more weldable Yes No C4AS Anti-stick variant of C4 Yes Yes C5 High-resistance similar to C4 plus inorganic filler Yes No C5A As C5, but more weldable Yes No C5AS Anti-stick variant of C5 Yes Yes C6 Inorganic filled organic coating for insulation properties Yes Yes

Magnetic properties

[edit]

The typical relative permeability (μr) of electrical steel is 4,000-38,000 times that of vacuum, compared to 1.003- for stainless steel.[15][16][17]

The magnetic properties of electrical steel are dependent on heat treatment, as increasing the average crystal size decreases the hysteresis loss. Hysteresis loss is determined by a standard Epstein tester and, for common grades of electrical steel, may range from about 2 to 10 watts per kilogram (1 to 5 watts per pound) at 60 Hz and 1.5 tesla magnetic field strength.

Want more information on HRS Steel Sheet? Feel free to contact us.

Electrical steel can be delivered in a semi-processed state so that, after punching the final shape, a final heat treatment can be applied to form the normally required 150-micrometer grain size. Fully processed electrical steel is usually delivered with an insulating coating, full heat treatment, and defined magnetic properties, for applications where punching does not significantly degrade the electrical steel properties. Excessive bending, incorrect heat treatment, or even rough handling can adversely affect electrical steel's magnetic properties and may also increase noise due to magnetostriction.[12]

The magnetic properties of electrical steel are tested using the internationally standard Epstein frame method.[18]

The size of magnetic domains in sheet electrical steel can be reduced by scribing the surface of the sheet with a laser, or mechanically. This greatly reduces the hysteresis losses in the assembled core.[19]

Applications

[edit]

Non-grain-oriented electrical steel (NGOES) is mainly used in rotating equipment, for example, electric motors, generators and over frequency and high-frequency converters. Grain-oriented electrical steel (GOES), on the other hand, is used in static equipment such as transformers.[20]

See also

[edit]
  • Ferrosilicon, starter material for silicon steel
  • Mumetal
  • Permalloy
  • Supermalloy

References

[edit]

All About Electrical Steel | Xometry

When it comes to electromagnetic applications and electrical equipment, electrical steel is the real MVP thanks to its unbeatable magnetic properties. If you’re thinking of using it, there are a lot of technical details to know (type, forms, properties, etc.), so we’ve broken it all down for you below. 

What is Electrical Steel?

With iron as its main ingredient and up to 6.5% silicon, electrical steel is classed as an iron-silicon alloy. Its standout feature is its magnetism thanks to the silicon content (and why it’s also known as silicon steel—one of its several monikers). It’s a type of low-carbon alloy (typically under 0.05%) to minimize magnetic losses. The amount of silicon added plays a big role in what it’s used for. For example, silicon levels around 2–3.5% are ideal for non-oriented electrical steel used for electric motors and generators. If it has 3–4.5% silicon, it’s used for grain-oriented electrical steel, which is specially processed for transformer cores, where reducing energy loss is important.

The most common form it comes in is thin sheets, which are usually coated with an insulator for lamination—which is the reason for another of its aliases, “lamination steel.” This involves stacking several sheets together, while keeping them protected from each other to cut down on energy losses caused by eddy currents. The magic is all in the combination of iron, which helps guide magnetic flux, and silicon, which increases electrical resistance and reduces energy waste. To top it off, its crystal structure is aligned in a way that allows for fast magnetization and demagnetization—something that also adds to its usefulness in motor and transformer cores.

Advantages

  • Durable, can handle mechanical stresses without deforming at low-silicon levels
  • Low core loss that minimizes energy waste
  • More cost-effective than some advanced magnetic materials (i.e., neodymium iron boron)
  • Higher magnetic permeability than plain carbon steel, allowing magnetic fields to pass through easily
  • Low electrical conductivity
  • Minimal heat generation keeps devices cooler

Disadvantages

  • High cost ($1,000–2,000/ton) compared to carbon steel ($300–550/ton)
  • Could rust, so protective coating (i.e., varnish, oxide) needs to be applied everywhere (even in small crevices)
  • Brittle at high silicon levels
  • Limited to electrical and magnetic purposes, can’t be used for structural or general-purpose applications

A Brief History

Silicon steel was first used for electrical applications in the late s, when English metallurgist Sir Robert Hadfield, who discovered manganese, found that silicon increased the magnetic permeability of iron. The correlation between magnetic permeability and crystallographic orientations in iron single crystals was discovered in by Honda and Kaya, which led to subsequent developments to silicon steel. It wasn’t until that Baosteel—after inventing the technologies and machinery for high-grade, effective non-oriented silicon steel production—managed to accomplish a rapid, all-encompassing product upgrade.

How it’s Made

To make electrical steel, the raw materials (i.e., iron ore, scrap steel) are melted together in an electric arc furnace, and then the appropriate amount of silicon is added. The mixture is hot-rolled into thin sheets and refined. This entails deoxidization (removing the oxygen from the molten mix) and vacuum degassing to up the purity and give it better electrical properties. After that, it’s annealed to boost the magnetism.

Types of Electrical Steel

There are two main electrical steel types, non-grain-oriented (NGOES) and grain-oriented (GOES). They both have high permeability and low core loss, but where they differ is in their grain structure and magnetic properties. NGOES has randomly oriented crystal grains, making its magnetism uniform in all directions (isotropic), allowing it to adapt well to changing magnetic fields. GOES, though, has a deliberately aligned crystal structure (anisotropic) for magnetization in a specific direction. This makes it good for fixed-field applications but not so much for constantly changing magnetic fields.

9

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name (required)

Your Email (required)

Subject

Your Message (required)

0/2000