Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

0/2000

Your Position: Home - - Why is aluminum so important?

Why is aluminum so important?

Author: wenzhang1

Apr. 29, 2024

Aluminium - Element information, properties and uses

Transcript :

Jinding Product Page

Chemistry in its element: aluminium


(Promo)


You're listening to Chemistry in its element brought to you by Chemistry World, the magazine of the Royal Society of Chemistry.


(End promo)


Chris Smith


This week the chemical cause of transatlantic linguistic friction. Is it an um or an ium at the end? It turns out us Brits might have egg on our faces as well as a liberal smattering of what we call aluminium.


Kira J. Weissman


'I feel like I'm trapped in a tin box at 39000 feet'. It's a common refrain of the flying-phobic, but maybe they would find comfort in knowing that the box is actually made of aluminium - more than 66000 kg of it, if they're sitting in a jumbo jet. While lamenting one's presence in an 'aluminium box' doesn't have quite the same ring, there are several good reasons to appreciate this choice of material. Pure aluminium is soft. However, alloying it with elements such as such as copper, magnesium, and zinc, dramatically boosts its strength while leaving it lightweight, obviously an asset when fighting against gravity. The resulting alloys, sometimes more malleable than aluminium itself, can be moulded into a variety of shapes, including the aerodynamic arc of a plane's wings, or its tubular fuselage. And whereas iron rusts away when exposed to the elements, aluminium forms a microscopically thin oxide layer, protecting its surface from further corrosion. With this hefty CV, it's not surprising to find aluminium in many other vehicles, including ships, cars, trucks, trains and bicycles.


Happily for the transportation industry, nature has blessed us with vast quantities of aluminium. The most abundant metal in the earth's crust, it's literally everywhere. Yet aluminium remained undiscovered until 1808, as it's bound up with oxygen and silicon into hundreds of different minerals, never appearing naturally in its metallic form. Sir Humphrey Davy, the Cornish chemist who discovered the metal, called it 'aluminum', after one of its source compounds, alum. Shortly after, however, the International Union of Pure and Applied Chemistry (or IUPAC) stepped in, standardizing the suffix to the more conventional 'ium'. In a further twist to the nomenclature story, the American Chemical Society resurrected the original spelling in 1925, and so ironically it is the Americans and not the British that pronounce the element's name as Davy intended.


In 1825, the honour of isolating aluminium for the first time fell to the Danish Scientist Hans Christian Øersted. He reportedly said of his prize, 'It forms a lump of metal that resembles tin in colour and sheen" - not an overly flattering description, but possibly an explanation for airline passengers' present confusion. The difficulty of ripping aluminium from its oxides - for all early processes yielded only kilogram quantities at best - ensured its temporary status as a precious metal, more valuable even than gold. In fact, an aluminium bar held pride of place alongside the Crown Jewels at the 1855 Paris Exhibition, while Napoleon is said to have reserved aluminium tableware for only his most honoured guests.


It wasn't until 1886 that Charles Martin Hall, an uncommonly dogged, amateur scientist of 22, developed the first economic means for extracting aluminium. Working in a woodshed with his older sister as assistant, he dissolved aluminium oxide in a bath of molten sodium hexafluoroaluminate (more commonly known as 'cryolite'), and then pried the aluminium and oxygen apart using a strong electrical current. Remarkably, another 22 year-old, the Frenchman Paul Louis Toussaint Héroult, discovered exactly the same electrolytic technique at almost exactly the same time, provoking a transatlantic patent race. Their legacy, enshrined as the Hall-Héroult process, remains the primary method for producing aluminium on a commercial scale - currently million of tons every year from aluminium's most plentiful ore, bauxite.


It wasn't only the transportation industry that grasped aluminium's advantages. By the early 1900s, aluminium had already supplanted copper in electrical power lines, its flexibility, light weight and low cost more than compensating for its poorer conductivity. Aluminium alloys are a construction favourite, finding use in cladding, windows, gutters, door frames and roofing, but are just as likely to turn up inside the home: in appliances, pots and pans, utensils, TV aerials, and furniture. As a thin foil, aluminium is a packaging material par excellence, flexible and durable, impermeable to water, and resistant to chemical attack - in short, ideal for protecting a life-saving medication or your favourite candy bar. But perhaps aluminium's most recognizable incarnation is the aluminium beverage can, hundreds of billions of which are produced annually. Each can's naturally glossy surface makes as an attractive backdrop for the product name, and while its thin walls can withstand up to 90 pounds of pressure per square inch (three times that in a typical car tyre), the contents can be easily accessed with a simple pull on the tab. And although aluminium refining gobbles up a large chunk of global electricity, aluminium cans can be recycled economically and repeatedly, each time saving almost 95% of the energy required to smelt the metal in the first place.


There is, however, a darker side to this shiny metal. Despite its abundance in Nature, aluminium is not known to serve any useful purpose for living cells. Yet in its soluble, +3 form, aluminium is toxic to plants. Release of Al3+ from its minerals is accelerated in the acidic soils which comprise almost half of arable land on the planet, making aluminium a major culprit in reducing crop yields. Humans don't require aluminium, and yet it enters our bodies every day - it's in the air we breathe, the water we drink, and the food we eat. While small amounts of aluminium are normally present in foods, we are responsible for the major sources of dietary aluminium: food additives, such as leavening, emulsifying and colouring agents. Swallowing over-the-counter antacids can raise intake levels by several thousand-fold. And many of us apply aluminium-containing deodorants directly to our skin every day. What's worrying about all this is that several studies have implicated aluminium as a risk factor for both breast cancer and Alzheimer's disease. While most experts remain unconvinced by the evidence, aluminium at high concentrations is a proven neurotoxin, primarily effecting bone and brain. So, until more research is done, the jury will remain out. Now, perhaps that IS something to trouble your mind on your next long haul flight.


Chris Smith


Researcher Kira Weissman from Saarland University in Saarbruken, Germany with the story of Aluminium and why I haven't been saying it in the way that Humphrey David intended. Next week, talking of the way the elements sound, what about this one.


Brian Clegg


There aren't many elements with names that are onomatopoeic. Say oxygen or iodine and there is no clue in the sound of the word to the nature of the element, but zinc is different - zinc, zinc, zinc, you can almost hear a set of coins falling into an old fashioned bath. It just has to be a hard metal. In use, zinc is often hidden away, almost secretive. It stops iron rusting, sooths sunburn, keeps dandruff at bay, combines with copper to make a very familiar gold coloured alloy and keeps us alive but we hardly notice it.


Chris Smith


And you can catch up with the clink of zinc with Brian Clegg on next week's Chemistry in its element. I'm Chris Smith, thank you for listening and goodbye.


(Promo)



Chemistry in its element is brought to you by the Royal Society of Chemistry and produced by thenakedscientists.com . There's more information and other episodes of Chemistry in its element on our website at chemistryworld.org/elements


(End promo)

Aluminum | Uses, Properties, & Compounds

aluminum (Al), chemical element, a lightweight silvery white metal of main Group 13 (IIIa, or boron group) of the periodic table. Aluminum is the most abundant metallic element in Earth’s crust and the most widely used nonferrous metal. Because of its chemical activity, aluminum never occurs in the metallic form in nature, but its compounds are present to a greater or lesser extent in almost all rocks, vegetation, and animals. Aluminum is concentrated in the outer 16 km (10 miles) of Earth’s crust, of which it constitutes about 8 percent by weight; it is exceeded in amount only by oxygen and silicon. The name aluminum is derived from the Latin word alumen, used to describe potash alum, or aluminum potassium sulfate, KAl(SO4)2∙12H2O.

Element Propertiesatomic number13atomic weight26.9815384melting point660 °C (1,220 °F)boiling point2,467 °C (4,473 °F)specific gravity2.70 (at 20 °C [68 °F])valence3electron configuration1s22s22p63s23p1

The company is the world’s best Custom Aluminum supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

Additional reading:
7 Essential Uses for Aluminium Coil Products

Uses and properties

Aluminum is added in small amounts to certain metals to improve their properties for specific uses, as in aluminum bronzes and most magnesium-base alloys; or, for aluminum-base alloys, moderate amounts of other metals and silicon are added to aluminum. The metal and its alloys are used extensively for aircraft construction, building materials, consumer durables (refrigerators, air conditioners, cooking utensils), electrical conductors, and chemical and food-processing equipment.

Special 30% offer for students! Finish the semester strong with Britannica.

Learn More

Pure aluminum (99.996 percent) is quite soft and weak; commercial aluminum (99 to 99.6 percent pure) with small amounts of silicon and iron is hard and strong. Ductile and highly malleable, aluminum can be drawn into wire or rolled into thin foil. The metal is only about one-third as dense as iron or copper. Though chemically active, aluminum is nevertheless highly corrosion-resistant, because in air a hard, tough oxide film forms on its surface.

Aluminum is an excellent conductor of heat and electricity. Its thermal conductivity is about one-half that of copper; its electrical conductivity, about two-thirds. It crystallizes in the face-centred cubic structure. All natural aluminum is the stable isotope aluminum-27. Metallic aluminum and its oxide and hydroxide are nontoxic.

Aluminum is slowly attacked by most dilute acids and rapidly dissolves in concentrated hydrochloric acid. Concentrated nitric acid, however, can be shipped in aluminum tank cars because it renders the metal passive. Even very pure aluminum is vigorously attacked by alkalies such as sodium and potassium hydroxide to yield hydrogen and the aluminate ion. Because of its great affinity for oxygen, finely divided aluminum, if ignited, will burn in carbon monoxide or carbon dioxide with the formation of aluminum oxide and carbide, but, at temperatures up to red heat, aluminum is inert to sulfur.

Aluminum can be detected in concentrations as low as one part per million by means of emission spectroscopy. Aluminum can be quantitatively analyzed as the oxide (formula Al2O3) or as a derivative of the organic nitrogen compound 8-hydroxyquinoline. The derivative has the molecular formula Al(C9H6ON)3.

Compounds

Ordinarily, aluminum is trivalent. At elevated temperatures, however, a few gaseous monovalent and bivalent compounds have been prepared (AlCl, Al2O, AlO). In aluminum the configuration of the three outer electrons is such that in a few compounds (e.g., crystalline aluminum fluoride [AlF3] and aluminum chloride [AlCl3]) the bare ion, Al3+, formed by loss of these electrons, is known to occur. The energy required to form the Al3+ ion, however, is very high, and, in the majority of cases, it is energetically more favourable for the aluminum atom to form covalent compounds by way of sp2 hybridization, as boron does. The Al3+ ion can be stabilized by hydration, and the octahedral ion [Al(H2O)6]3+ occurs both in aqueous solution and in several salts.

A number of aluminum compounds have important industrial applications. Alumina, which occurs in nature as corundum, is also prepared commercially in large quantities for use in the production of aluminum metal and the manufacture of insulators, spark plugs, and various other products. Upon heating, alumina develops a porous structure, which enables it to adsorb water vapour. This form of aluminum oxide, commercially known as activated alumina, is used for drying gases and certain liquids. It also serves as a carrier for catalysts of various chemical reactions.

Anodic aluminum oxide (AAO), typically produced via the electrochemical oxidation of aluminum, is a nanostructured aluminum-based material with a very unique structure. AAO contains cylindrical pores that provide for a variety of uses. It is a thermally and mechanically stable compound while also being optically transparent and an electrical insulator. The pore size and thickness of AAO can easily be tailored to fit certain applications, including acting as a template for synthesizing materials into nanotubes and nanorods.

Another major compound is aluminum sulfate, a colourless salt obtained by the action of sulfuric acid on hydrated aluminum oxide. The commercial form is a hydrated crystalline solid with the chemical formula Al2(SO4)3. It is used extensively in paper manufacture as a binder for dyes and as a surface filler. Aluminum sulfate combines with the sulfates of univalent metals to form hydrated double sulfates called alums. The alums, double salts of formula MAl(SO4)2 ·12H2O (where M is a singly charged cation such as K+), also contain the Al3+ ion; M can be the cation of sodium, potassium, rubidium, cesium, ammonium, or thallium, and the aluminum may be replaced by a variety of other M3+ ions—e.g., gallium, indium, titanium, vanadium, chromium, manganese, iron, or cobalt. The most important of such salts is aluminum potassium sulfate, also known as potassium alum or potash alum. These alums have many applications, especially in the production of medicines, textiles, and paints.

The reaction of gaseous chlorine with molten aluminum metal produces aluminum chloride; the latter is the most commonly used catalyst in Friedel-Crafts reactions—i.e., synthetic organic reactions involved in the preparations of a wide variety of compounds, including aromatic ketones and anthroquinone and its derivatives. Hydrated aluminum chloride, commonly known as aluminum chlorohydrate, AlCl3∙H2O, is used as a topical antiperspirant or body deodorant, which acts by constricting the pores. It is one of several aluminum salts employed by the cosmetics industry.

Aluminum hydroxide, Al(OH)3, is used to waterproof fabrics and to produce a number of other aluminum compounds, including salts called aluminates that contain the AlO−2 group. With hydrogen, aluminum forms aluminum hydride, AlH3, a polymeric solid from which are derived the tetrohydroaluminates (important reducing agents). Lithium aluminum hydride (LiAlH4), formed by the reaction of aluminum chloride with lithium hydride, is widely used in organic chemistry—e.g., to reduce aldehydes and ketones to primary and secondary alcohols, respectively.

This article was most recently revised and updated by Amy Tikkanen

For more information, please visit Aluminium Busbar.

1

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name (required)

Your Email (required)

Subject

Your Message (required)

0/2000